Vector similarity search using Redis Stack

Finding similar (or nearest) vectors is a popular task in ML workloads. One of the popular applications currently is querying LLMs enriched by a local knowledge base using the RAG approach. Redis is a popular and effective solution to work with different types of data, including vectors.

Installing Redis Stack

While standard Redis installation doesn’t support vectors and requires installing extensions, Redis Stack is an advanced pack that comes with vector support. To install Redis Stack visit installation instructions or in the case of Ubuntu run the following:

curl -fsSL https://packages.redis.io/gpg | sudo gpg --dearmor -o /usr/share/keyrings/redis-archive-keyring.gpg
sudo chmod 644 /usr/share/keyrings/redis-archive-keyring.gpg
echo "deb [signed-by=/usr/share/keyrings/redis-archive-keyring.gpg] https://packages.redis.io/deb $(lsb_release -cs) main" | sudo tee /etc/apt/sources.list.d/redis.list
sudo apt-get update
sudo apt-get install redis-stack-server
... (will install Redis Stack)

Storing vectors

We have multiple ways of storing vectors in Redis. First - is by using Redis hashes. In this case, we can pass vector as some specific key of hash together with other keys:

import numpy as np
from redis import Redis
r = Redis(host="localhost", port=6379)
r.hset('doc_1', mapping={
  'title': 'Some doc',
  'vector': np.random.rand(8).astype(np.float32).tobytes()
})
print(np.frombuffer(r.hget('doc_1', 'vector'), dtype=np.float32))
[0.4681091  0.5844017  0.21458998 0.15927918 0.29837957 0.13542081
 0.9707261  0.6643426 ]

Another way of storing vectors is to use JSON documents in a similar manner.

Creating vector index

Since vector similarity search requires a lot of computation work (calculating the distance between the query vector and all vectors in or db), Redis provides vector indexes to make things fast. To create a vector index, we should specify vector dimensions (since we can only search for similar vectors of the same dimension) and distance metric (L2 or Cosine based on your case):

from redis import Redis
from redis.commands.search.field import VectorField
from redis.commands.search.indexDefinition import IndexDefinition, IndexType

r = Redis(host="localhost", port=6379)

schema = (
    VectorField("vector",
      "HNSW", {
        "TYPE": "FLOAT32",
        "DIM": 8,
        "DISTANCE_METRIC": "L2",
      }
    ),
)

r.ft('my_index').create_index(
  fields=schema,
  definition=IndexDefinition(prefix=['obj:'], index_type=IndexType.HASH)
)

print('index created')
Index created

We can make sure the index was created successfully with the following command:

redis-cli FT.INFO my_index
 1) index_name
 2) my_index
 3) index_options
 4) (empty array)
 5) index_definition
 ...

Now we can populate and check our vectors search.

Searching for similar vectors

To search for the nearest (similar) vectors, we should build a search query with the KNN expression:

from redis import Redis
from redis.commands.search.query import Query

r = Redis(host="localhost", port=6379)

query = (
  Query("*=>[KNN 5 @vector $vec as dist]")
  .sort_by("dist")
  .return_fields("id", "dist")
  .dialect(2)
)


query_params = { "vec": np.random.rand(8).astype(np.float32).tobytes() }
found = r.ft('my_index').search(query, query_params).docs
print(found)
[Document {'id': 'obj:80079', 'payload': None, 'dist': '0.0622428953648'}, Document {'id': 'obj:29389', 'payload': None, 'dist': '0.0633160546422'}, Document {'id': 'obj:78626', 'payload': None, 'dist': '0.078750140965'}, Document {'id': 'obj:69396', 'payload': None, 'dist': '0.0949668586254'}, Document {'id': 'obj:37440', 'payload': None, 'dist': '0.1012461707'}]
Published a year ago in #data about #vector search, #redis, #knn, #hnsw and #rag by Denys Golotiuk

Edit this article on Github
Denys Golotiuk · golotyuk@gmail.com · my github